219 research outputs found

    The MINI mixed finite element for the Stokes problem: An experimental investigation

    Full text link
    Super-convergence of order 1.5 in pressure and velocity has been experimentally investigated for the two-dimensional Stokes problem discretised with the MINI mixed finite element. Even though the classic mixed finite element theory for the MINI element guarantees linear convergence for the total error, recent theoretical results indicate that super-convergence of order 1.5 in pressure and of the linear part of the computed velocity to the piecewise linear nodal interpolation of the exact velocity is in fact possible with structured, three-directional triangular meshes. The numerical experiments presented here suggest a more general validity of super-convergence of order 1.5, possibly to automatically generated and unstructured triangulations. In addition, the approximating properties of the complete computed velocity have been compared with the approximating properties of the piecewise-linear part of the computed velocity, finding that the former is generally closer to the exact velocity, whereas the latter conserves mass better

    A stabilized finite element method for the two-field and three-field Stokes eigenvalue problems

    Get PDF
    In this paper, the stabilized finite element approximation of the Stokes eigenvalue problems is considered for both the two-field (displacement–pressure) and the three-field (stress–displacement–pressure) formulations. The method presented is based on a subgrid scale concept, and depends on the approximation of the unresolvable scales of the continuous solution. In general, subgrid scale techniques consist in the addition of a residual based term to the basic Galerkin formulation. The application of a standard residual based stabilization method to a linear eigenvalue problem leads to a quadratic eigenvalue problem in discrete form which is physically inconvenient. As a distinguished feature of the present study, we take the space of the unresolved subscales orthogonal to the finite element space, which promises a remedy to the above mentioned complication. In essence, we put forward that only if the orthogonal projection is used, the residual is simplified and the use of term by term stabilization is allowed. Thus, we do not need to put the whole residual in the formulation, and the linear eigenproblem form is recovered properly. We prove that the method applied is convergent, and present the error estimates for the eigenvalues and the eigenfunctions. We report several numerical tests in order to illustrate that the theoretical results are validated.Peer ReviewedPostprint (author's final draft

    A stabilized finite element method for the two-field and three-field Stokes eigenvalue problems

    Get PDF
    In this paper, the stabilized finite element approximation of the Stokes eigenvalue problems is considered for both the two-field (displacement-pressure) and the three-field (stress-displacement-pressure) formulations. The method presented is based on a subgrid scale concept, and depends on the approximation of the unresolvable scales of the continuous solution. In general, subgrid scale techniques consist in the addition of a residual based term to the basic Galerkin formulation. The application of a standard residual based stabilization method to a linear eigenvalue problem leads to a quadratic eigenvalue problem in discrete form which is physically inconvenient. As a distinguished feature of the present study, we take the space of the unresolved subscales orthogonal to the finite element space, which promises a remedy to the above mentioned complication. In essence, we put forward that only if the orthogonal projection is used, the residual is simplified and the use of term by term stabilization is allowed. Thus, we do not need to put the whole residual in the formulation, and the linear eigenproblem form is recovered properly. We prove that the method applied is convergent, and present the error estimates for the eigenvalues and the eigenfunctions. We report several numerical tests in order to illustrate that the theoretical results are validated

    Finite element differential forms on curvilinear cubic meshes and their approximation properties

    Full text link
    We study the approximation properties of a wide class of finite element differential forms on curvilinear cubic meshes in n dimensions. Specifically, we consider meshes in which each element is the image of a cubical reference element under a diffeomorphism, and finite element spaces in which the shape functions and degrees of freedom are obtained from the reference element by pullback of differential forms. In the case where the diffeomorphisms from the reference element are all affine, i.e., mesh consists of parallelotopes, it is standard that the rate of convergence in L2 exceeds by one the degree of the largest full polynomial space contained in the reference space of shape functions. When the diffeomorphism is multilinear, the rate of convergence for the same space of reference shape function may degrade severely, the more so when the form degree is larger. The main result of the paper gives a sufficient condition on the reference shape functions to obtain a given rate of convergence.Comment: 17 pages, 1 figure; v2: changes in response to referee reports; v3: minor additional changes, this version accepted for Numerische Mathematik; v3: very minor updates, this version corresponds to the final published versio

    Convergence analysis of the scaled boundary finite element method for the Laplace equation

    Full text link
    The scaled boundary finite element method (SBFEM) is a relatively recent boundary element method that allows the approximation of solutions to PDEs without the need of a fundamental solution. A theoretical framework for the convergence analysis of SBFEM is proposed here. This is achieved by defining a space of semi-discrete functions and constructing an interpolation operator onto this space. We prove error estimates for this interpolation operator and show that optimal convergence to the solution can be obtained in SBFEM. These theoretical results are backed by a numerical example.Comment: 15 pages, 3 figure

    On the existence and the uniqueness of the solution to a fluid-structure interaction problem

    Full text link
    In this paper we consider the linearized version of a system of partial differential equations arising from a fluid-structure interaction model. We prove the existence and the uniqueness of the solution under natural regularity assumptions
    • …
    corecore